



## CONVIDE RESEARCH AREA A

Prof. Dr. Ralf Reussner • Overview • 12.12.2024



## **ROLE OF RESEARCH AREA A WITHIN CONVIDE**





Formalising concepts of consistency in CPS development

- Notions of consistency and their properties:
  - Complexity
  - Certainty
- Special demands of CPS design
  - Hybrid/continuous models
  - Data-defined models



## **PROJECT OVERVIEW**



| <b>B01</b> | Cross-Organizational Design of View Types and V-SUM Meta-Models | Atkinson<br><b>Pretschner</b> |  |
|------------|-----------------------------------------------------------------|-------------------------------|--|
| B02        | Concurrent Editing and Transactionality                         | Acosta<br>Reussner            |  |
| B03        | Recovery from Temporary Inconsistency                           | Koziolek<br><b>Ulbrich</b>    |  |
| B04        | Maintaining Consistency between Variants and Versions           | Aßmann<br>Burger<br>Schaefer  |  |



## **Overview on Projects**

| (E) A01 | Formalising and Relating Different Notions of Consistency | Aßmann<br><b>Beckert</b><br>Reussner    |  |
|---------|-----------------------------------------------------------|-----------------------------------------|--|
| A02     | Complexity of Consistency                                 | <b>Atkinson</b><br>Burger<br>Ulbrich    |  |
| A03     | Consistency Under Uncertainty                             | <b>Acosta</b><br>Koziolek               |  |
| A04     | Consistency of Hybrid / Continuous Models                 | Althoff<br><b>Platzer</b><br>Pretschner |  |
| A05     | Consistency of Data-Defined Models                        | <b>Althoff</b><br>Platzer               |  |

# A01: Formalising and Relating Different Notions of Consistency



 $(\Delta)$ 



## **Exemplary Research Question**

What are properties and relations between different notions of consistency?



## A02: Complexity of Consistency



## **Exemplary Research Question**

How can the complexity and impact of the different semantic overlap resolution approaches be measured to support the design of a V-SUM meta-model?



## A03: Consistency Under Uncertainty



How can uncertainty in CPS design be dealt with? What does it mean for consistency? How could consistency relations be used to lower uncertainty?

## A04: Consistency of Hybrid / Continuous Models



0



## **Exemplary Research Question**

How to specify consistency for hybrid models?



## A05: Consistency of Data-Defined Models

Data-Defined Model



## **Exemplary Research Question**

What does consistency mean for data-defined models?



## **Highlight Talks Today**

A01: Romain Pascal:

- Multidimensional Consistency, Looking into **Semantics**
- A02: Colin Atkinson:
- A04: André Platzer:
- **Towards Deep Reactions in Vitruvius**
- **Differential Refinement Logic for Hybrid Systems** Consistency





#### A01 – Multidimensional Consistency, Looking into Semantics

#### Winter Colloquium

U. Aßmann, B. Beckert, K. Feichtinger, K. Kegel, R. Pascual, R. Reussner | Decembre 12, 2024



Convide - Consistency in the View-Based Development of Cyber-Physical Systems

#### Multidimensional Consistency<sup>1</sup>

- Binary vs. N-ary Reason about multiple models
- Normative vs. Descriptive
  Reason about correctness
- Qualitative vs. Quantitative Reason about consistency-increasing methods
- Certainty vs. Uncertainty Reason about the physical part of the system
- Syntax vs. Semantics Reason about quality

<sup>1</sup>Feichtinger et al. 2024.









#### **Semantics**

Semantics with Java programs as models

- trace semantics
- pre and post conditions
- result of tests
- termination property
- number of methods or attributes of a class

#### **Semantics**

Semantics with Java programs as models

- trace semantics
- pre and post conditions
- result of tests
- termination property
- number of methods or attributes of a class

#### **Abstract semantics**

 $\llbracket \cdot \rrbracket : M \to S$ 

M meta-model and S semantic space

It is purpose-dependent





#### Main findings<sup>2</sup>

• 1. Imposing conditions on the semantic spaces allows for a notion of semantical V-SUM.

<sup>2</sup>Pascual et al. 2024.



#### Main findings<sup>2</sup>

- 1. Imposing conditions on the semantic spaces allows for a notion of semantical V-SUM.
- 2. There exist semantics called **natural semantics** that capture exactly the information necessary to assess the consistency of models.

<sup>&</sup>lt;sup>2</sup>Pascual et al. 2024.

#### Example

Suppose that  $(m_i \in M_i)_{i \in I}$  describe **components** of a car The models are **consistent** if the total weight is  $\leq$  **1000** kg The natural semantics are

 $\llbracket \cdot \rrbracket_i^{\text{nat}} \colon M_i \to [0, 1000] \cup \{\text{too much}\}$ 



(



#### **References I**

- [1] Kevin Feichtinger et al. "Towards Formalizing and Relating Different Notions of Consistency in Cyber-Physical Systems Engineering". In: Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems. MODELS Companion '24. New York, NY, USA: Association for Computing Machinery, Oct. 31, 2024, pp. 915–919. ISBN: 979-8-4007-0622-6. DOI: 10.1145/3652620.3688565.
- [2] Romain Pascual et al. "Formal foundations of consistency in model-driven development". In: 12th international symposium on leveraging applications of formal methods, verification and validation (ISoLA 2024). Lecture notes in computer science. Oct. 2024.



## A2: Colin Atkinson: Towards Deep Reactions in Vitruvius







Δ

## Multi-level (Deep) Vitruvius





**Vitruvius VSUM** 



**Consistency Specification Rules** The Reactions Language





**Covering multiple domain levels multi-level modeling technology** 





Covering multiple domain levels with "two-level" modeling technology



|    | 1  | <pre>import deep "pathtolml_model" as owner</pre>             |
|----|----|---------------------------------------------------------------|
| Į. | 2  | <pre>import deep "pathtolml_model" as supporter</pre>         |
|    | 3  |                                                               |
|    | 4  | reactions: owner2supporter                                    |
|    | 5  | in reaction to changes in owner below level 1                 |
|    | 6  | execute actions in supporter below level 1                    |
|    | 7  |                                                               |
|    | 8  | reaction NewS400Inserted {                                    |
|    | 9  | after direct element owner::S400 inserted in owner at level 2 |
|    | 10 | reactions: owner2supporter                                    |
|    | 11 | in reaction to changes in owner below level 1                 |
|    | 12 | execute actions in supporter below level (                    |
|    | 13 | -                                                             |
|    | 14 | (autime addueurs) 000 and 000 addueurs                        |
|    | 15 | routine addnews400(owner::5400 old5400) {                     |
|    | 10 | Match {                                                       |
|    | 17 | 3                                                             |
|    | 19 | create {                                                      |
|    | 20 | reaction NewS400Inserted {                                    |
|    | 21 | after direct element owner::S400 inserted in owner at level 2 |
|    | 22 |                                                               |
|    | 23 | <pre>supDevice.name = oldS400.name</pre>                      |
|    | 24 | addCorrespondenceBetween(oldS400, supDevice)                  |
|    | 25 | <pre>supDeviceLevel.content.add(supDevice)</pre>              |
|    | 26 | }                                                             |
|    | 27 | }                                                             |
|    |    |                                                               |

 $(\overline{\Delta})$ 

## • Import of Deep Models using ,'deep'

• Support for Deep Types

## **Restriction of changes to certain levels**

**Making Reactions Level Aware** 



GEFÖRDERT DURCH DIE DFG Deutsche - SFB-1608 - 501798263

MULTI@MODELS 24 • September 22–27, 2024, Linz, Austria

## TOWARDS DEEP REACTIONS IN MULTI-LEVEL, MULTI-VIEW MODELING



C(A)NVIDE

Thomas Weber, Arne Lange, Erik Burger, Lars König, Martin Armbruster

Colin Atkinson, Monalisha Ojha, Mohammad Sadeghi





#### Towards Deep Reactions in Multi-Level, Multi-View Modeling

| Thomas Weber                      | Monalisha Ojha                 |
|-----------------------------------|--------------------------------|
| KASTEL                            | Software Engineering Group     |
| Karlsruhe Institute of Technology | University of Mannheim         |
| Karlsruhe, Germany                | Mannheim, Germany              |
| thomas.weber@kit.edu              | monalisha.ojha@uni-mannheim.de |
| Lars König                        | Martin Armbruster              |

Lars König KASTEL KASTEL KASTEL Karlsruhe Institute of Technology Karlsruhe, Germany Iars-koenig@kit.edu martina.rmbroutser@kit.edu

mannheim.de er Arne Lange Software Engineering Group unology University of Mannheim y Mannheim, Germany Ledu lange@uu-imannheim.de

Colin Atkinson

Software Engineering Group

University of Mannheim

Mannheim, Germany

atkinson@uni-mannheim.de

ACM Reference Format:

**1 INTRODUCTION** 

Mohammad Sadeghi Software Engineering Group

University of Mannheim Mannheim, Germany

mohammad sadeghi@uni-

Erik Burger KASTEL Karlsruhe Institute of Technology Karlsruhe, Germany burger@kit.edu

#### ABSTRACT

As the scale, complexity, and scope of software-intensive systems continue to grow, so does the importance of synergitically integrating two important emerging paradigms in software engineeringmulti-level modeling and multi-view modeling. While stable tooling for both has been developed by research institutions in recent years, to date no tool has attempted to integrate the two at a functional sector in this paper, we describe some first steps we have damental level. In this paper, we describe some first steps we have taken in this direction by integrating the Yrnzvits V-SUM-based multi-view environment with the Meanee multi-level modeling environment. In particular, we show how Vrnzvits's Reactions language, which allows different models in Vrnzvits V-SUMs to be kept consistent, can be extended to support multi-level V-SUMs

#### CCS CONCEPTS

 Software and its engineering → Domain specific languages; Specialized application languages; Application specific development environments; • Information systems → Mediators and data integration.

#### **KEYWORDS**

Multi-level modeling, V-SUM, View-based modeling, Vitruvius, Consistency



This work is licensed under a Creative Commons Attribution International 4.0 MODELS Companion '26, September 22–27, 2004, Linz, Austria © 2024, Copyright held by the ornera/author(s) ACM ISBN 979-8-4007-0622-62109 https://doi.org/10.1145/36552630.568208 veloped as parts of integrated syber-physical systems, it has become interestingly important to be able of describe and modeling interrelated collections of so-called views. View-based modeling descriptions of systems consistent over time are therefore receiving growing attention in academia and industry. Of the two basic strateles for achieving inter-view consistent, who so-called projective approach is the most promising at scale, since it reduces the number of pairwise consistency relationships that need to be maintained [9]. However, it requires some kind of central megamodel, or *Single Underlying* Model (SUM) to serve as the source of information and truth from which the views can be projected. The Virnowsvir framework is one such environment that supports.

Thomas Weber, Monalisha Ojha, Mohammad Sadeghi, Lars König, Martin

Armbruster, Arne Lange, Erik Burger, and Colin Atkinson. 2024. Towards Deep Reactions in Multi-Level, Multi-View Modeling. In ACM/IEEE 27th

International Conference on Model Driven Engineering Languages and Systems (MODELS Companion '24), September 22–27, 2024, Linz, Austria. ACM, New

As software systems have grown in size and complexity, and are de-

York, NY, USA, 10 pages. https://doi.org/10.1145/3652620.3688208

The vintovis numerous a use statistication and an application of the projective approach using a PVIII and SUM (i.e., VM) rather than a pure, redundancy-free SUM. This obviates the data challenge of creating a pure SUM in real-life aoftware engineering projects where it is necessary to work with and integrate, many existing models, hased on long-established and utilized metamodels. A VITROVIN V-SUM therefore facilitates the consistent connection of multiple, semantically overlapping models and metamodels. Nameans of *Consistency Preservation Rules* (CPRs) written in a specially designed Reactions language.

### Differential Refinement Logic for Hybrid Systems Consistency

Enguerrand Prebet André Platzer

Karlsruhe Institute of Technology

IJCAR'24







#### Concept (Differential Refinement Logic)

 $\alpha \leq \beta$ 



event-triggered verifiable



(LICS'16)

 $[(u:=g(x);x'=f(x)\&t\leq T)^*]$  safe  $[(u:=G(x);x'=f(x)\&Q(x))^*]$  safe



#### Concept (Differential Refinement Logic)

 $\alpha \leq \beta$ 



event-triggered verifiable



(LICS'16)

 $[(u:=g(x);x'=f(x)\&t\leq T)^*]$  safe  $\leftarrow [(u:=G(x);x'=f(x)\&Q(x))^*]$  safe



#### R **Dynamical Systems Relations Analysis**

#### Concept (Differential Refinement Logic)



event-triggered verifiable



(LICS'16)

 $\alpha \leq \beta$ 

 $(u := g(x); x' = f(x) \& t \le T)^* \le (u :\in G(x); x' = f(x) \& Q(x))^*$ 



### R Differential Refinement Logic dRL

#### Definition (Hybrid program)

 $\alpha,\beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$ 



#### Definition (Differential refinement logic)

 $P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \mid P \rightarrow Q \mid \forall x P \mid \exists x P \mid [\alpha]P \mid \langle \alpha \rangle P \mid \alpha \leq \beta$ 



(LICS'16)

## R Differential Refinement Logic dRL

#### Definition (Hybrid program)

 $\alpha,\beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$ 



#### Definition (Differential refinement logic)

 $P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \mid P \rightarrow Q \mid \forall x P \mid \exists x P \mid [\alpha] P \mid \langle \alpha \rangle P \mid \alpha \leq \beta$ 



(LICS'16)

## Differential Refinement Logic dRL: Semantics

### Definition (Hybrid program semantics) $(\llbracket \cdot \rrbracket : \mathsf{HP} \to \mathscr{D}(\mathscr{S} \times \mathscr{S}))$

$$\begin{split} \llbracket x &:= e \rrbracket = \{(\omega, v) : v = \omega \text{ except } v \llbracket x \rrbracket = \omega \llbracket e \rrbracket \} \\ \llbracket ?Q \rrbracket = \{(\omega, \omega) : \omega \in \llbracket Q \rrbracket \} \\ \llbracket x' = f(x) \rrbracket = \{(\varphi(0), \varphi(r)) : \varphi \models x' = f(x) \text{ for some duration } r \} \\ \llbracket \alpha \cup \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \\ \llbracket \alpha; \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \\ \llbracket \alpha^* \rrbracket = \llbracket \alpha \rrbracket^* = \bigcup_{n \in \mathbb{N}} \llbracket \alpha^n \rrbracket$$
 compositional semantical

#### Definition (dRL semantics)

$$\begin{bmatrix} \alpha \leq \beta \end{bmatrix} = \{ \omega : \{ v : (\omega, v) \in \llbracket \alpha \rrbracket \} \subseteq \{ v : (\omega, v) \in \llbracket \beta \rrbracket \} \}$$
$$\begin{bmatrix} e \geq \tilde{e} \end{bmatrix} = \{ \omega : \omega \llbracket e \rrbracket \geq \omega \llbracket \tilde{e} \rrbracket \}$$
$$\begin{bmatrix} \neg P \rrbracket = \llbracket P \rrbracket^{\mathbb{C}}$$
$$\begin{bmatrix} P \land Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$
$$\begin{bmatrix} \langle \alpha \rangle P \rrbracket = \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for some } v : (\omega, v) \in \llbracket \alpha \rrbracket \}$$
$$\begin{bmatrix} [\alpha] P \rrbracket = \llbracket \alpha \rrbracket \circ \llbracket P \rrbracket = \{ \omega : v \in \llbracket P \rrbracket \text{ for all } v : (\omega, v) \in \llbracket \alpha \rrbracket \}$$

 $(\llbracket \cdot \rrbracket : \mathsf{Fml} \to \wp(\mathscr{S}))$ 

### R Differential Refinement Logic: Axiomatization

 $[<] \alpha < \beta \rightarrow ([\alpha]P \leftarrow [\beta]P)$  $\langle \langle \rangle \beta \langle \alpha \rangle \rightarrow (\langle \alpha \rangle P \leftarrow \langle \beta \rangle P)$ :  $\alpha$ :  $\beta < \gamma$ ;  $\delta \leftarrow \alpha < \gamma \land [\alpha] \beta < \delta$ un\*  $\alpha^* < \beta^* \leftarrow [\alpha^*](\alpha < \beta)$  $loop_{l} \alpha^{*}; \beta < \beta \leftarrow [\alpha^{*}]\alpha; \beta < \beta$  $loop_r \alpha; \beta^* \leq \alpha \leftarrow \alpha; \beta \leq \alpha$  $ODE \begin{array}{l} x' = e \& P \le x' = k \& Q \\ \leftrightarrow [x' = e \& P](x' = k \land Q) \end{array}$  $\cup_{l} \alpha \cup \beta < \gamma \leftrightarrow \alpha < \gamma \land \beta < \gamma$ 

$$\leq \begin{array}{l} \alpha \leq \beta \leftrightarrow \\ \forall y (\langle \alpha \rangle x = y \rightarrow \langle \beta \rangle x = y) \\ \leq' \begin{array}{l} [\alpha] P \leftrightarrow \\ \alpha \leq (x := *; ?P) \end{array} \right.$$



 $<_t \alpha < \beta \leftarrow \alpha < \gamma \land \gamma < \beta$ 

 $\cup_r \alpha < \beta \cup \gamma \leftarrow \alpha < \beta \lor \alpha < \gamma$ 

Differential Refinement Logic for Hybrid Systems Consistency

LICS'16,IJCAR'24

### Differential Refinement Logic: Axiomatization



 $<_t \alpha < \beta \leftarrow \alpha < \gamma \land \gamma < \beta$ 

Differential Refinement Logic for Hybrid Systems Consistency

LICAB'24 5/6

LICS'16.IJCAR'24
#### $\checkmark$ Takeaway: Hybrid System Refinements for Concistency

Differential refinement logic

- Event-triggered control: Easy to verify but hard to implement
- Time-triggered control: Easy to implement but hard to verify
- Best of both worlds: verify event-triggered, implement time-triggered
- dRL proofs identify required conditions (e.g., event invariance)
- Implementation model  $\neq$  verification model But consistency!
- Iterative design reduces risk, increases repeated effort
- Hierarchical proof structuring by refinement
- Decidable fragment for refinements via equational ODEs JACM'20

Relations  $\alpha \leq \beta$  between hybrid systems models are as useful as properties  $[\alpha]\phi$  of hybrid systems models. Fundamental consistency operator. Simultaneous logical language integration is best.



LICS'16, IJCAR'24

GEFÖRDERT DURCH DIE **DFG** <sup>Deutsche</sup> Forschungsgemeinschaft - SFB-1608 - 501798263



# **THANK YOU!**















# CONVIDE RESEARCH AREA B

Prof. Dr. Ina Schaefer • Overview • 12.12.2024



## **ROLE OF RESEARCH AREA B WITHIN CONVIDE**

## Mechanisms for consistency management across different views, in particular:

- Designing V-SUM metamodels and view types compatible with intellectual property protection
- Working concurrently on different views of a V-SUM
- Dealing with temporary inconsistencies in a V-SUM
- Maintaining consistency among variants and versions in a V-SUM





## **PROJECT OVERVIEW**



| <b>B01</b> | Cross-Organizational Design of View Types and V-SUM Meta-Models | Atkinson<br><b>Pretschner</b> |  |
|------------|-----------------------------------------------------------------|-------------------------------|--|
| B02        | Concurrent Editing and Transactionality                         | Acosta<br>Reussner            |  |
| B03        | Recovery from Temporary Inconsistency                           | Koziolek<br><b>Ulbrich</b>    |  |
| <b>B04</b> | Maintaining Consistency between Variants and Versions           | Aßmann<br>Burger<br>Schaefer  |  |

## **B01: CROSS-ORGANIZATIONAL DESIGN OF VIEW TYPES AND V-SUM META MODELS**

4





#### **Exemplary Research Question**

How can V-SUM meta models and view types be defined to preserve consistency and to protect Area B @ CRC 1608 Winter-Colloquium intellectual property?

# **B02: CONCURRENT EDITING AND TRANSACTIONALITY**



#### **Exemplary Research Question**

How can transactionality be used efficiently to preserve consistency after concurrent edits?





#### **Exemplary Research Question**

How can abstract recovery operations leading out of a temporary model inconsistency be represented Area B @ CRC 1608 Winter-Colloquium and efficiently searched for?

6

# **B04: MAINTAINING CONSISTENCY BETWEEN VARIANTS AND VERSIONS**

7



C(A)N

DE

#### **Exemplary Research Question**

How can a V-SUM capture consistency of variants and versions and support their view-based Area B @ CRC 1608 Winter-Colloquium development?



# B02 @ CRC 1608 Concurrent Editing and Transactionality



## **PERFORMANCE OF MODEL UPDATES**





## **CONFLICTS AND PERFORMANCE PROBLEMS**





How long does it take to apply model deltas?

What if two transactions conflict and one needs to be rejected?

 $(\Delta$ 

#### Area B @ CRC 1608 Winter-Colloquium 11

#### **OUR APPROACH**

#### Varying the Transaction Size

Different number of transactions, same number of model

One transaction, different number of model deltas [1]

deltas [2]

#### References

[1] Benedikt Jutz and Thomas Weber. Scalability of Consistency Preservation in Vitruvius. 15th Symposium on Software Performance, Linz, 2024.

[2] Thomas Weber, Benedikt Jutz and Zenon Zacouris. The Influence of Granularity of Transactions on Performance In Vitruvius. 15th Symposium on Software Performance, Linz, 2024.

#### Varying the V-SUMM topology

Vary chain length [2]



Vary fan-out degree [2]





## **PROCEDURE AND RESULTS**



#### Procedure

Use two different V-SUM metamodels for measurements:

- 1. UML-Java case study [1]
- 2. Connected graph with isomorphism consistency rules [2]

Apply different types of model deltas, measure time to restore consistency:

- 1. UML models converted into model deltas [1]
- 2. Multiple nodes created in one graph [2]



#### Findings

- 1. Time for applying consistency rules and number of model deltas correspond [1]
- 2. Performance degrades with smaller transaction size [2]
- 3. Propagating deltas is slower in a fan-out than in a chain topology [2]



# B04 @ CRC 1608 Consistency Preserving SPLE



## **CONSISTENCY PRESERVING SPLE – CONTEXT**





model-driven world (unidirectional CPRs)

 $\mathbf{A}$ 

## **CONSISTENCY PRESERVING SPLE – CONTEXT**





Vitruv consistency preservation in a model-driven world (unidirectional CPRs)



Delta-oriented variability in a model-driven world

## **CONSISTENCY PRESERVING SPLE – PROBLEM**





## **CONSISTENCY PRESERVING SPLE – PROBLEM**





## **CONSISTENCY PRESERVING SPLE – PROBLEM**





## **CONSISTENCY PRESERVING SPLE – IDEA**



#### Idea:

Using consistency preservation as a mechanism for model-driven development

#### Advantage:

- Getting a consistent version of model 3
- Getting a delta for further SPLE development

₹₽.,

## **CONSISTENCY PRESERVING SPLE – IDEA**





#### Idea:

Using consistency preservation as a mechanism for model-driven development

#### Advantage:

- Getting a consistent version of model 3
- Getting a delta for further SPLE development

 $(\Delta$ 

## **CONSISTENCY PRESERVING SPLE – IDEA**





#### Idea:

Using consistency preservation as a mechanism for model-driven development

#### Advantage:

- Getting a consistent version of model 3
- Getting a delta for further SPLE development

**(Д**,













 $(\Delta$ 





nsistency preservation simplifies delta-oriented software product line engineering.

 $(\Delta$ 

GEFÖRDERT DURCH DIE **DFG** <sup>Deutsche</sup> Forschungsgemeinschaft - SFB-1608 - 501798263



# **THANK YOU!**













## **RESEARCH AREA C: ENGINEERING WITH CONSISTENCY**

Albert Albers (KIT-IPEK) Bernhard Beckert (KIT-KASTEL), Tobias Düser (KIT-IPEK), Anne Koziolek (KIT-KASTEL), Ralf Reussner (KIT-KASTEL), Eric Sax (KIT-ITIV), Ina Schaefer (KIT-KASTEL)

CRC/SFB 1608 Winter Colloquium



**Defined generations & test bench** of braking system

**15 Inconsistency Situations** 

based on Workshops

Working Packages in Progress in C Area **12** Submitted, accepted or published **publications** 

**Taxonomy** regarding understandings in CPS-Development





# Strategic Project C01-S





















C01

## CONSISTENCY IN CROSS-GENERATIONAL ENGINEERING OF CYBER-PHYSICAL SYSTEMS





3

## **CROSS-GENERATIONAL DEVELOPMENT OF THE RESEARCH PLATFORM – DEFINED GENERATIONS**



C(A)NVIDE

## **CROSS-GENERATIONAL DEVELOPMENT OF THE RESEARCH PLATFORM – CREATING VIEWS**





## APPLICATION OF DELTA-MODELLING USING MODEL OF SGE BY ALBERS





## **CONSISTENCY IN CYBER-PHYSICAL PRODUCT LINES**



 $\bigcirc$ 



- valid configurations can yield **incompatible artefacts** in solution space
- construct & solve resource assignment problem to decide realisability

#### **Use Cases**

#### Build-Time: Realisability & Consistency

Are all configurations offered to the customer functioning after production?

#### **Product-in-Field: Update-Ability**

Which product variants in field may receive an update so that they're still functioning?

#### Hardware Variability

Which configurations would be nonfunctioning with evolved hardware?

Philip Ochs, Tobias Pett, and Ina Schaefer. 2024. Consistency Is Key: Can Your Product Line Realise What It Models?. In ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems (MODELS Companion '24), September 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3652620.3687812.

## **STRATEGIC PROJECT C01-S**

DEVELOPMENT OF A MODEL-BASED METHOD FOR THE INSTANTIATION OF CONSISTENT AND CREDIBLE VALIDATION ENVIRONMENTS BASED ON VALIDATION OBJECTIVES IN INTERDISCIPLINARY PRODUCT DEVELOPMENT





#### Steps therefore:

- Research to find existing approaches
- Modelling and using the Brake-System-in-the-Loop as lead example:
  - Reverse Engineering to find requirements for the method by going from existing validation instances back to the validation goals
  - Retrospective comparison between the existing and the generated validation instances
- Integration of the generated method in the V-SUMM approach
- Application & Evaluation on the Brake-System-in-the-Loop, KA-RaceIng and other CPS domains




**Consistency-Aware Testing of CPS Variants and Versions** 

Researchers

H















### **CROSS-GENERATIONAL DEVELOPMENT OF THE RESEARCH PLATFORM – VALIDATION SYSTEM**



Brake Requirements Model



Winter Colloquium: C-Area Presentation | Albert Albers | 12.12.2024

10

## **C&C<sup>2</sup> METHODOLOGY APPLIED - OVERVIEW**



- Problem: CAD Models do not have a lot of Semantic Information included
- Solution: Apply C&C<sup>2</sup> Methodology to generate semantic information
- Progress:
  - Design of Ecore Meta Model for the C&C<sup>2</sup> Approach
  - Implementation of a custom C&C<sup>2</sup> View type
- Students: Master Thesis Automatic Generation of C&C<sup>2</sup> Model from a CAD Model
- Publication @ SSP2025: Extended Abstract is submitted
- Next Steps:
  - Integration of View Type into Vitruvius
  - Integration of Models into Vitruvius
  - Definition of Consistency Relations (next slide)



### **C&C<sup>2</sup> METHODOLOGY APPLIED - CONSISTENCY RELATIONS**



Surface Pair (Exchange)

C(A)NVIDE

8





**Consistency-Enabled Incremental Quality Analysis of CPS** 

Researchers

Ηd









### WHY RISK ANALYSIS & ASSESSMENT MODELING LANGUAGE..?





### DEVELOPMENT PROCESS OF (RAAML BASED) SAFETY ANALYSIS META-MODEL



#### Step-I: <u>Preparation</u>

- Understand RAAML
- Choose Papyrus Platform

Step II: <u>Model Creation</u>
-Define stereo-types and their corresponding meta-classes.
-Use standardized notations & terminologies

#### Step III: Model Validation

- -Model refactoring & validation
- -Modularity and separation of concerns
- -Version control and change management



### **EXAMPLE- ISO26262 LIBRARY**





16 Winter Colloquium: C-Area Presentation | Albert Albers | 12.12.2024



**C04** 

Processes for Consistent CPS Engineering Researchers

Η







### A FIRST INCONSISTENCY WORKSHOP FROM PRACTICE BRINGS A FIRST PERSPECTIVE



Workshop with 10 KA RaceIng student members Searchfield for Inconsistencies

| No. | Icon               | Name of inconsistency                                       | Description                                                                                                                                                                                                                                              |
|-----|--------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   |                    | Uncertainty errors through the transfer of models           | Inconsistency occurred in modeling (e.g.,<br>Computer-Aided Design and Computational<br>Fluid Dynamics models), and the transferability<br>of modeling results to reality                                                                                |
| 2   | $\uparrow\uparrow$ | Parallel development of different models                    | Inconsistency occurred between the results of<br>the different sub-teams, as individual modules<br>were developed independently of each other                                                                                                            |
| 3   | : D<br>(†          | Independent development                                     | Sub-teams developed subsystems<br>independently of each other, sometimes without<br>any knowledge of the dependencies of other<br>subsystems.                                                                                                            |
| 4   |                    | Knowledge loss                                              | Inconsistency occurred due to loss of<br>knowledge (e.g., specific parameters in a<br>model). Especially in a constantly changing<br>engineering environment such as long-term<br>student-driven development projects.                                   |
| 5   |                    | Unstructured communication                                  | Inconsistency occurred due to unstructured<br>communication between team members and<br>information discrepancies.                                                                                                                                       |
| 6   |                    | Differences in targets and<br>requirements<br>documentation | Inconsistency occurred due to different target<br>and requirements documentation between the<br>developer and manufacturer from another<br>branch (e.g., no data sheets available).                                                                      |
| 7   |                    | Incorrect models                                            | Inconsistency occurred due to errors in the creation of a model. The new model is based on an incorrect or outdated model. Hence the solution does not meet the requirements and target specifications.                                                  |
| 8   |                    | Different milestones                                        | Inconsistency occurred due to unsynchronized<br>development cycles and schedules (e.g., sub-<br>team A is still in development and wants to<br>make changes, that affect other sub-teams.<br>Whereas, sub-team B already reached the next<br>milestone). |

Albers, A., Koziołek, A., Völk, T.A., Klippert, M., Pfaff, F., Stolpmann, R. and Schwarz, S.E., 2024, June. Identification of Inconsistencies in Agile CPS Engineering with Formula Student. In ISPIM Innovation Symposium (pp. 1-15). The International Society for Professional Innovation Management (ISPIM).

during Workshop

## **INCONSISTENCY SITUATION DESCRIPTION: TEMPLATE TO ENABLE PRACTITIONERS INPUT**





There are a total of **15 interviews planned**. Currently, **9 interviews** (Automotive: 3 OEM and 1 Tier 1 supplier, Industrial: 1 OEM) have been **conducted**. If you have any other **interesting contacts** in the industry, please **share them with us** so that we can have **greater interdisciplinarity** in the interviews



# THANK YOU FROM THE C AREA































**CRC/SFB 1608** Winter Colloquium